MATH 2028 Honours Advanced Calculus II
 2023-24 Term 1
 Problem Set 3
 due on Oct 4, 2023 (Wednesday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: Throughout this problem set, we use R to denote a rectangle in \mathbb{R}^{n}. When we write $R=A \times B$, then we mean $A \subset \mathbb{R}^{m}$ and $B \subset \mathbb{R}^{k}$ are rectangles with $n=m+k$.

Problems to hand in

1. Evaluate the following integrals:
(a) $\int_{R} \frac{x}{x^{2}+y} d V$ where $R=[0,1] \times[1,3]$
(b) $\int_{0}^{1} \int_{x^{2}}^{x} \frac{x}{1+y^{2}} d y d x$
(c) $\int_{0}^{1} \int_{\sqrt{y}}^{1} e^{y / x} d x d y$
2. Let $\Omega \subset \mathbb{R}^{3}$ be the portion of the cube $[0,1] \times[0,1] \times[0,1]$ lying above the plane $y+z=1$ and below the plane $x+y+z=2$. Evaluate the integral $\int_{\Omega} x d V$.
3. Let $f(x)=\left(\int_{0}^{x} e^{-t^{2}} d t\right)^{2}$ and $g(x)=\int_{0}^{1}\left(t^{2}+1\right)^{-1} e^{-x^{2}\left(t^{2}+1\right)} d t$.
(a) Prove that $f(x)+g(x)=\frac{\pi}{4}$ for all $x \geq 0$.
(b) Use (a) to show that $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
4. Let $f: R=[0,1] \times[0,1] \rightarrow \mathbb{R}$ be the function defined by

$$
f(x, y)=\left\{\begin{array}{cl}
1 & \text { if } y \in \mathbb{Q} \\
2 x & \text { if } y \notin \mathbb{Q}
\end{array}\right.
$$

(a) Prove that f is NOT integrable on R.
(b) Show that each iterated integral $\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y$ and $\int_{0}^{1} \int_{0}^{1} f(x, y) d y d x$ exist and compute their values.

Suggested Exercises

1. Evaluate the following integrals:
(a) $\int_{R} \frac{y}{x} d V$ where $R=[1,3] \times[2,4]$
(b) $\int_{0}^{1} \int_{-\sqrt{1-y^{2}}}^{\sqrt{1-y^{2}}} y d x d y$
(c) $\int_{0}^{4} \int_{\sqrt{y}}^{2} \frac{1}{1+x^{3}} d x d y$
2. Find the volume of the region in \mathbb{R}^{3} bounded by the cylinders $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$.
3. Find the volume of the region in \mathbb{R}^{3} bounded below by the $x y$-plane, above by $z=y$, and on the sides by $y=4-x^{2}$.
4. Let $f: \Omega \rightarrow \mathbb{R}$ be a C^{2} function ${ }^{1}$ on an open subset $\Omega \subset \mathbb{R}^{2}$. Use Fubini's Theorem to prove that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$ everywhere in Ω.
5. Let $f: R=[a, b] \times[c, d] \rightarrow \mathbb{R}$ be a continuous function. Define another function $F: R \rightarrow \mathbb{R}$ such that

$$
F(x, y):=\int_{[a, x] \times[c, y]} f d V .
$$

Compute $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ in the interior of R.
6. Let $f: R=[a, b] \times[c, d] \rightarrow \mathbb{R}$ be a continuous function such that $\frac{\partial f}{\partial y}$ is continuous on R. Define $G:[c, d] \rightarrow \mathbb{R}$ such that

$$
G(y):=\int_{a}^{b} f(x, y) d x
$$

(a) Show that G is continuous on $[c, d]$.
(b) Prove that G is differentiable on (c, d) and $G^{\prime}(y)=\int_{a}^{b} \frac{\partial f}{\partial y}(x, y) d x$.
7. Let P and Q be bounded subsets of \mathbb{R}^{3} whose boundaries have measure zero. For each $z_{0} \in \mathbb{R}$, we define the following subsets of \mathbb{R}^{2} :

$$
\begin{aligned}
P_{z_{0}} & :=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x, y, z_{0}\right) \in P\right\}, \\
Q_{z_{0}} & :=\left\{(x, y) \in \mathbb{R}^{2} \mid\left(x, y, z_{0}\right) \in Q\right\} .
\end{aligned}
$$

Suppose for EACH $z_{0} \in \mathbb{R}$, the boundaries $\partial P_{z_{0}}$ and $\partial Q_{z_{0}}$ have measure zero in \mathbb{R}^{2} and we have $\operatorname{Area}\left(P_{z_{0}}\right)=\operatorname{Area}\left(Q_{z_{0}}\right)$. Prove that $\operatorname{Vol}(P)=\operatorname{Vol}(Q)$.
8. Let $f: R=A \times B \rightarrow \mathbb{R}$ be a bounded integrable function. Suppose $g: A \rightarrow \mathbb{R}$ is a function satisfying

$$
\underline{\int}_{B} f(x, y) d y \leq g(x) \leq \bar{\int}_{B} f(x, y) d y
$$

for all $x \in A$. Prove that g is integrable over A and $\int_{A} g(x) d x=\int_{R} f d V$.

Challenging Exercises

1. (a) Let $C \subset R=A \times B$ be a set of content zero in \mathbb{R}^{n}. Let A^{\prime} be the set of all $x \in A$ such that the set $\{y \in B \mid(x, y) \in C\}$ does NOT have content zero in \mathbb{R}^{k}. Prove that A^{\prime} is a set of measure zero in \mathbb{R}^{m}.
(b) Let $C \subset R=[0,1] \times[0,1]$ be the set consisting of all $(x, y) \in R$ such that $x=\frac{p}{q} \in \mathbb{Q}$, where $p, q \in \mathbb{N}$ are coprime, and $y \in\left[0, \frac{1}{q}\right]$. Prove that C has content zero in \mathbb{R}^{2} but the subset A^{\prime} as defined in (a) does NOT have content zero in \mathbb{R}.
[^0]
[^0]: ${ }^{1}$ Recall that a function f is C^{k} if all the partial derivatives up to order k exist and are continuous.

