MATH 2028 Honours Advanced Calculus II 2023-24 Term 1 Problem Set 3

due on Oct 4, 2023 (Wednesday) at 11:59PM

Instructions: You are allowed to discuss with your classmates or seek help from the TAs but you are required to write/type up your own solutions. You can either type up your assignment or scan a copy of your written assignment into ONE PDF file and submit through Blackboard on/before the due date. Please remember to write down your name and student ID. No late homework will be accepted.

Notations: Throughout this problem set, we use R to denote a rectangle in \mathbb{R}^n . When we write $R = A \times B$, then we mean $A \subset \mathbb{R}^m$ and $B \subset \mathbb{R}^k$ are rectangles with n = m + k.

Problems to hand in

1. Evaluate the following integrals:

(a)
$$\int_{R} \frac{x}{x^{2}+y} dV$$
 where $R = [0,1] \times [1,3]$

(b)
$$\int_0^1 \int_{x^2}^x \frac{x}{1+y^2} \, dy \, dx$$

(c)
$$\int_0^1 \int_{\sqrt{y}}^1 e^{y/x} dxdy$$

2. Let $\Omega \subset \mathbb{R}^3$ be the portion of the cube $[0,1] \times [0,1] \times [0,1]$ lying above the plane y+z=1 and below the plane x+y+z=2. Evaluate the integral $\int_{\Omega} x \, dV$.

3. Let
$$f(x) = \left(\int_0^x e^{-t^2} dt\right)^2$$
 and $g(x) = \int_0^1 (t^2 + 1)^{-1} e^{-x^2(t^2 + 1)} dt$.

- (a) Prove that $f(x) + g(x) = \frac{\pi}{4}$ for all $x \ge 0$.
- (b) Use (a) to show that $\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2}$.

4. Let $f: R = [0,1] \times [0,1] \to \mathbb{R}$ be the function defined by

$$f(x,y) = \begin{cases} 1 & \text{if } y \in \mathbb{Q}, \\ 2x & \text{if } y \notin \mathbb{Q}. \end{cases}$$

- (a) Prove that f is NOT integrable on R.
- (b) Show that each iterated integral $\int_0^1 \int_0^1 f(x,y) \, dx dy$ and $\int_0^1 \overline{\int}_0^1 f(x,y) \, dy dx$ exist and compute their values.

Suggested Exercises

1. Evaluate the following integrals:

(a)
$$\int_{R} \frac{y}{x} dV$$
 where $R = [1, 3] \times [2, 4]$

(b)
$$\int_0^1 \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} y \ dx dy$$

(c)
$$\int_0^4 \int_{\sqrt{y}}^2 \frac{1}{1+x^3} dx dy$$

- 2. Find the volume of the region in \mathbb{R}^3 bounded by the cylinders $x^2 + y^2 = 1$ and $x^2 + z^2 = 1$.
- 3. Find the volume of the region in \mathbb{R}^3 bounded below by the xy-plane, above by z=y, and on the sides by $y=4-x^2$.
- 4. Let $f: \Omega \to \mathbb{R}$ be a C^2 function 1 on an open subset $\Omega \subset \mathbb{R}^2$. Use Fubini's Theorem to prove that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$ everywhere in Ω .
- 5. Let $f: R = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function. Define another function $F: R \to \mathbb{R}$ such that

$$F(x,y) := \int_{[a,x] \times [c,y]} f \ dV.$$

Compute $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ in the interior of R.

6. Let $f: R = [a, b] \times [c, d] \to \mathbb{R}$ be a continuous function such that $\frac{\partial f}{\partial y}$ is continuous on R. Define $G: [c, d] \to \mathbb{R}$ such that

$$G(y) := \int_a^b f(x, y) \ dx.$$

- (a) Show that G is continuous on [c, d].
- (b) Prove that G is differentiable on (c,d) and $G'(y) = \int_a^b \frac{\partial f}{\partial y}(x,y) dx$.
- 7. Let P and Q be bounded subsets of \mathbb{R}^3 whose boundaries have measure zero. For each $z_0 \in \mathbb{R}$, we define the following subsets of \mathbb{R}^2 :

$$P_{z_0} := \{(x, y) \in \mathbb{R}^2 \mid (x, y, z_0) \in P\},\$$

$$Q_{z_0} := \{(x, y) \in \mathbb{R}^2 \mid (x, y, z_0) \in Q\}.$$

Suppose for EACH $z_0 \in \mathbb{R}$, the boundaries ∂P_{z_0} and ∂Q_{z_0} have measure zero in \mathbb{R}^2 and we have $\operatorname{Area}(P_{z_0}) = \operatorname{Area}(Q_{z_0})$. Prove that $\operatorname{Vol}(P) = \operatorname{Vol}(Q)$.

8. Let $f:R=A\times B\to\mathbb{R}$ be a bounded integrable function. Suppose $g:A\to\mathbb{R}$ is a function satisfying

$$\int_{-B} f(x,y) \ dy \le g(x) \le \int_{-B} f(x,y) \ dy$$

for all $x \in A$. Prove that g is integrable over A and $\int_A g(x) dx = \int_R f dV$.

Challenging Exercises

- 1. (a) Let $C \subset R = A \times B$ be a set of content zero in \mathbb{R}^n . Let A' be the set of all $x \in A$ such that the set $\{y \in B \mid (x,y) \in C\}$ does NOT have content zero in \mathbb{R}^k . Prove that A' is a set of measure zero in \mathbb{R}^m .
 - (b) Let $C \subset R = [0,1] \times [0,1]$ be the set consisting of all $(x,y) \in R$ such that $x = \frac{p}{q} \in \mathbb{Q}$, where $p,q \in \mathbb{N}$ are coprime, and $y \in [0,\frac{1}{q}]$. Prove that C has content zero in \mathbb{R}^2 but the subset A' as defined in (a) does NOT have content zero in \mathbb{R} .

Recall that a function f is C^k if all the partial derivatives up to order k exist and are continuous.